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The AMS-02 experiment on ISS
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FIG. 1 (color). A 1.03 TeV electron event as measured by the
AMS detector on the ISS in the bending (y-z) plane. Tracker
planes 1-9 measure the particle charge and momentum. The
TRD identifies the particle as an electron. The TOF measures
the charge and ensures that the particle is downward-going. The
RICH independently measures the charge and velocity. The
ECAL measures the 3D shower profile, independently identifies
the particle as an electron, and measures its energy. An electron
is identified by (i) an electron signal in the TRD, (ii) an electron
signal in the ECAL, and (ii1) the matching of the ECAL shower
energy and the momentum measured with the tracker and
magnet.

Lunched on May 2011, will collect data for 20 yrs.
Measuring all CR nuclei species up to Ni.
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AMS-02 pbar/p ratio and Dark Matter
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Could we have an
additional contribution?
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AMS-02 pbar/p ratio and Dark Matter (&
Fermi Galactic Center excess?)

Early results/projections by :
Bringmann et al. 2014, Cirelli et al. 2014, Hooper, Linden, Mertsch JCAP

Cuoco, Kramer, Korsmeier PRL 2017:
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See also, Cui, Yang, Tsai & Fan, PRL 2017:



What about the Antiproton to Proton Ratio
Uncertainties?

Antiprotons background uncertainties are significant.

They are associated with:

I) the antiproton production cross-section from CR
protons and heavier nuclei collisions with the ISM
gas

li) the propagation of CRs through the ISM

iiN) Solar Modulation (the propagation of CRs through
the Heliosphere)



) Antiproton production cross-section uncertainties

There are significant uncertainties on the antiproton production cross-section

directly from p-p collisions. Most parametrizations have only used data from

the 70s.
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Also one has to include the prOdUCﬁOn of FIG. 8. Estimate of the uncertainties in the antiproton source
anﬁprOtOnS from collisions with heavier term from inelastic pp scattering. The blue band indicates the

. . . . 30 uncertainty band due to the global fit with Eq.(13), while
nuclei (mainly He), which can contribute

the red band corresponds to the convolution of the uncertain-

~40% more antiprotons than the p-p ties brought by fits to the data with Eq.(13), Eq.(12) and
lisi | / dditi h . with the spline interpolation (see Fig.6.). The orange band
collisions alone. In aaaition the contri- takes into account the contribution from decays of antineu-

bution from antineutrons produced first at trons produced in the same reactions. Vertical bands as in
. Fig.6. See text for details.
p-p collisions must be modeled.

See also results from Kappl & Winkler JCAP 2014



Il) Accounting for ISM galactic propagation uncertainties for Cosmic Rays
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Il) Accounting for ISM galactic propagation uncertainties for Cosmic Rays
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Ill) Dealing with Solar Modulation Uncertainties

Strauss et. al ApdJd 2011

There IS Chargeo Dependence

Figure 7. Three-dimensional spatial representation of the particle trajectories shown in Figure 1. Two representative particle trajectories (black and gray lines) are
shown for the A > 0 (left panel) and A < O (right panel) HMF polarity cycles. In the A < 0 cycle, the pseudo-particles (galactic electrons) are transported mainly
toward higher latitudes, while in the A > 0 cycle, the particles remain confined to low latitudes and drift outward mainly along the HCS. This illustration is consistent

with the results of galactic electrons shown in the previous figure.
Drifts Can NOT be ignored e PAMIELA, Adriani et al. 2013
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Protons

Let the CR archival Data
tell us how the CR fluxes
have been modulated:
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Cross-checking with the PROTON data that account for the majority of
observed cosmic rays; monthly AND total (i.e ISM & Solar Modulation):
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Constraining the form of the Modulation potential and the ISM p spectrum
In a recursive mannetr. Also IC, McKinnon PRD 106, 063021 2022
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Repeating for multiple Cosmic-Ray species we can constrain the physical
_ processes affectmg the cosmlc-ray productlon & propagatlon
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Combining all uncertainties together and
marginalizing over them:
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We find an the excess at~3+ sigmal!
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We find an the excess at~3+ sigmal!
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Can we fit away the excesses? NO (we find them at ~3+ sigma)
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However, it is important to understand the AMS correlated errors.
See : Boudaud et al. Phys. Rev. Res. 2020 and Heisig, Korsmeier &
Winkler Phys. Rev Res. 2020.
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After working on antiprotons

There are two antiproton excesses at ~3./-6 sigma (each) of
local significance.

Oneisa” 7 at ~5-20 GeV in the anti-proton energies and
the other is above ~80 GeV and is a

From this point on | will focus on the lower energy one.

| will work under the hypothesis that it is due to a DM
particle of mass 50-90 GeV annihilating to b-bbar quarks with
a cross-section of ~2x107{-26} cm”3/s.

What else should we search for?



How about heavier nuclei?

AMS, has unofficial claims of anti-He CR
> (cosmic ray proton)\. €VENtS (not all at the same year).

target proton (in the ISM)
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2 AMS 5-years senslitivity

W= MED-MAX

0 T S T NN/
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There is an unexpected amplitude on the flux of anti-He




Roughly the ratio of production is
p:d:3He ~ 10" :10° - 107 : 10° — 10*
We run PYTHIA simulations to run p-p collisions in the ISM

We are testing CM energies from 40 GeV to 8 TeV.

Antinuclei (A) | Coalescence momentum p, (MeV)
d 1084
t 133111
3He 133411

TABLE 1. Coalescence momentum of d, ¢, and 3He with 20,
obtained from |2]
ALICE Collaboration, ALICE-PUBLIC-2017-010

|IC, Rimal (in prep)



We get the total # of anti-nuclei from p-p collisions in the ISM
with updated uncertainties.

CM Energy /s | # of Events (billion) d 3He
(GeV) min max | min max
38000 2 463741 713658 | 329 2585
6664 2 473791 729309 | 350 2475
4624 2.54 638216 980897 | 496 3347
3392 2.56 641678 987292 | 489 3173

There is still a significant (but reduced) range of uncertainty
on the anti-nuclei.

|IC, Rimal (in prep)



We also derive spectra of the anti-nuclei at production:
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FIG. 1. Spectrum of p (top-left), d (top-right), £ (bottom-left), and *He (botton-right) after 2 billion collision with /s = 8
TeV

Which can be combined with the information on the ISM
cosmic-ray flux of protons, He etc.



Anti-deuterons Uncertainties

Eiin % ANo/dEin (Mm™2s™'sr™)

ISM Model I, 6=0.40, z,=5.6 kpc
— At source d Spect.
Arb. Norm.) *

Sol. Mod. Unc.
Inj. & ISM Unc.

p-p cr. sec. & pp momentum Unc.

Combined Back. Unc.

N

0.5

1 5 10 50 100
Ekin (GGV/H)
IC, Linden, Hooper PRD 2020



Anti-matter flux Uncertainties
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_ Diffusive re-acceleration in
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Varylng ISM Convectlon and lefuswe Reacceleration
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Combining all Indirect DM searches

CMB Limits

Dwarf Limits
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Future Projections
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Conclusions

e There is an additional component in the AMS antiproton data BOTH at
~@GeV energies AND above ~80 GeV.

e Jo study the pbar/p ratio we have taken into account all basic
uncertainties (injection and propagation through the ISM, antiprotons
production cross-sections).

e May possibly be an indication of a dark matter signal in agreement with
the GeV excess at gamma-rays.




Thank you



