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What is Solar Modulation of CRs?

Galactic cosmic rays encounter a turbulent solar wind with an embedded heliospheric
magnetic field (HMF) when entering the heliosphere. This leads to significant variations
In their intensity and in their energy as has been observed at Earth.
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The Solar Modulation of Cosmic Rays has been observed to have a 22-year cycle.




Importance of understanding Solar Modulation
AND developing analytical models for it

 CR observations have entered a high precision era. Statistical errors are
often much smaller than the corresponding systematic uncertainties
associated with CR propagation. Among them, those governing diffusive
reacceleration and convection, impact primarily the same low-energy CR
population that is most affected by solar modulation.

e |mprovements in our understanding of solar modulation will allow for
more reliable inferences of the parameters describing the injection and
transport of CRs throughout the Milky Way.

 Highly sophisticated particle propagation codes have been developed to
model the physical processes of three-dimensional diffusion, particle
drifts, convection and adiabatic energy losses within the Heliosphere.

 These codes include large numbers of free-parameters which must be
scanned over in parallel with parameters associated with CR injection
and propagation within the Milky Way. This makes such approaches
computationally intensive and non-predictive.



An analytic formula: The Force Field
Approximation

The propagation of CRs through the HMF can be described by:

6@{ = —(V + (@p))Vf + V(DV ) + %(vx?) 2l

I JSOUI'CG

Olnp i

average drift velocity Adiabatic energy losses

solar wind velocity Diffusioniterm CRs produced

CR phase'space density inside the HS

. ’ — 3 4 pAdAY o 3 N 7Y 1 Noril =t nd po ol by y ¢
. [ . . P LA .\ e V—: i “’ ) 4 g ' [t} e d""" "" \: l'- = ‘. | L L i it o ; 3 ¥ :: " A - >
) A 1_5-- ARLLIEES e ',‘f’?‘-v; ARD D '.'.'I"' a4 s (. ‘.‘.,r.u P S o S S ey = M
b + *




Then the propagation eq. within the HMF simplifies to:
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For highly relativistic Particles: (8 ~ 1
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New advances that al

Fielc

OW Us to move beyond the Force
Approximation

o Several well measured solar observables are known to
correlate with the solar modulation: the magnitude of the
solar magnetic tield, the bulk velocity of the solar wind,
and the tilt angle of the heliospheric current sheet.

 CR datasets provided by the PAMELA and AMS-02
experiments measure variations in the local CR spectrum
over relatively short timescales with high statistical
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Geometry of Heliosphere
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Wealth of Solar Data
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From Simulations that propagate CRs from the Sun outwards:

Strauss et. al Apd 2011

Figure 7. Three-dimensional spatial representation of the particle trajectories shown in Figure 1. Two representative particle trajectories (black and gray lines) are
shown for the A > 0 (left panel) and A < O (right panel) HMF polarity cycles. In the A < 0 cycle, the pseudo-particles (galactic electrons) are transported mainly
toward higher latitudes, while in the A > 0 cycle, the particles remain confined to low latitudes and drift outward mainly along the HCS. This illustration is consistent
with the results of galactic electrons shown in the previous figure.




Wealth of CR Data

CR proton flux 4-week
_[ Intervals
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CR proton flux at low Energies is with time
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Strong Correlation between Tilt angle and HMF amplitude, weaker
correlation of the Wind Bulk speed. The latter can’t account for the
measured variations in the CR flux.




Necessary changes in the analytical method, i.e. in deriving Phi

T

) Inclu

ne modu

de drift effects and energy dependence.

ation potential Phi depends on the Adiabatic energy losses -> Time

of Propagation of CRs from the TS to Earth. Drifts are important only for the
CRs traveling through the Heliospheric Current Sheet.
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sets the regime

At low rigidities: the Larmor Radius of CRs is much
smaller than the curvature of the HMF. Particles follow
the local magnetic field structure, suppressing the drift
velocity.
At high rigidities: CRs are not affected by the small-

scale structure of the HMF field lines, but instead probe

the average HMF structure and intensity, so Ay = T'Larmor



Thus the timescale tor CR drift is proportional to:

| 1+ (R/Rg)*
oy < P B R/Ro

1) Separate Charges and include Time etfects (breaking
also spherical symmetry).

particles propagate through the Current Sheet, g i)
while propagate through the poles. o

The MOST agnostic form for @ is:
®(R,t) = ¢o g(|Brot(t)])

1+ (R/RO)2>
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| et the Data tell us what are, @0, ¢1,f(a(t)) and g(|Btos(t)])

From previous slide: 9(|Btot|)  |Btot|
Constraining the first gA>0 term
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Constraining the second gA<0 term
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Accounting for ISM galactic propagation uncertainties for protons:

diffusion
o (r,p,t sources 5 4
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re-acceleration convection
Voyager 1 (~ISM) proton flux:
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B/C from PAMELA and AMS-02; Sets the time scale for CRs to
diffuse away from the galactic disk. Also sets constraints on the
combination of convection and re-acceleration.

1000

T T T T7711.00
* PAMELA -

e AMS—02 _

x°/dof=0.41
x°/dof=0.71
¥’/ dof=0.40
x°/dof=0.43
¥’/ dof=0.34

B/C ratio




Cross-cheching every time with all the PROTON data;
monthly AND total:
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Constraining the form of the Modulation potential and the ISM p spectrum
IN a recursive manner.




After all is set and done: P (R
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¢(g>0)/¢(g<0)

Rigidity AND Charge Dependence
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Conclusions:

Using Solar and CR data: Accounted for Time, Rigidity and Charge
dependence which are related to observable HMF properties. Thus
Modulation effects can now predicted/probed. Remaining uncertainties
will be further constrained by AMS-02 in the next years.

Era Exper. | Biot| (nT) o (degrees) Cbgfiploév CD(Q>§2;V ¢§§>§3;v @ggioév (I)(q<2og;v (I)g%q<??();v
07/92 TMAX 3.9 3.1 0.78 0.78 0.78 _ 0.90 (0.89) 0. 82 (0.82) 0. a (0.80)
07/93 BESS 7.9 35.4 0.69 0.69 0.69  0.85 (0.80) 0.75 (0.73) 0.72 (0.71)
07/97 BESS 6.4 22.6 0.56 0.56 0.56  0.58 (0.62) 0.57 (0.58) 0.56 (0.57)
05/98 CAPRICE 4.3 46.3 0.38 0.38 0.38  0.63 (0.45) 0.46 (0.40) 0.43 (0.39)
06,/98 AMS-01 4.5 45.2 0.39 0.39 0.39  0.63 (0.47) 0.48 (0.42) 0.44 (0.41)
07/98 BESS 4.6 46.6 0.40 0.40 0.40  0.68 (0.49) 0.50 (0.43) 0.46 (0.42)
07/99 BESS 5.8 73.9 0.51 0.51 0.51  2.71 (0.67) 1.26 (0.56) 0.97 (0.54)
08/02 BESS 7.6 55.1  1.54 (0.83) 0.96 (0.72) 0.85 (0.70)  0.66 0.66 0.66
12/04  BESS Polar I 6.4 46.5  0.95 (0.68) 0.69 (0.60) 0.64 (0.59)  0.56 0.56 0.56

07-12/06 ~ PAMELA 5.2 342 0.54 (0.52) 0.48 (0.48) 0.47 (0.47)  0.45 0.45 0.45
01-06/07  PAMELA 4.9 321 0.49 (0.49) 0.45 (0.45) 0.44 (0.44)  0.43 0.43 0.43
07-12/07  PAMELA 4.4 311 0.44 (0.44) 0.40 (0.40) 0.40 (0.40)  0.39 0.39 0.39
12/07  BESS Polar II 4.5 32.5  0.45 (0.44) 0.41 (0.41) 0.40 (0.40)  0.39 0.39 0.39
01-06/08  PAMELA 45 34.7  0.47 (0.45) 0.42 (0.41) 0.41 (0.41)  0.39 0.39 0.39
07-12/08  PAMELA 4.2 28.8  0.40 (0.41) 0.48 (0.38) 0.37 (0.38)  0.37 0.37 0.37
01-06/09  PAMELA 4.0 21.5  0.36 (0.38) 0.36 (0.36) 0.35 (0.36)  0.35 0.35 0.35
07-12/09  PAMELA A1 187  0.36 (0.39) 0.36 (0.37) 0.36 (0.36)  0.36 0.36 0.36
01-06/10  PAMELA 4.7 39.7  0.56 (0.48) 0.46 (0.44) 0.44 (0.43)  0.41 0.41 0.41
07-12/10 ~ PAMELA 4.6 39.9  0.55 (0.47) 0.45 (0.43) 0.43 (0.42)  0.40 0.40 0.40
01—06/11 PAMFELA 4.7 48.3 0.73 (O 50) 0.52 (O 44) 0.48 (0.43) 0.41 0.41 0.41
07-12/11 AMS-02/PAMELA 4.7 60.5  1.21 (0.52) 0.69 (0.45) 0.58 (0.43)  0.41 0.41 0.41
01-06/12 AMS-02/PAMELA 4.8 67.2  1.66 (0.54) 0.85 (0.46) 0.68 (0.45)  0.42 0.42 0.42
01-06/14 AMS-02 5.3 67.3 0.46 0.46 0.46 1.83 (0.60) 0.92 (0.51) 0.75 (0.49)

.C., D.H, T.L. PRD 2016



We will be able to further understand the CR antiprotons which
may be a probe of Dark Matter annihilations in the Milky Way
(work in progress with D.H and T.L.). Finally, connections with
diffuse gamma-ray and microwave emission.
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