Searching for Dark Matter Signals in Cosmic Rays, Gamma Rays, Microwaves, Radio, Neutrinos
|
|
The nature of dark matter remains to be a puzz- ling question in physics. Through cosmological measurements the dark matter abundance has been determined to be about 23% of the energy density in the Universe. It is distributed in clusters of gala- xies, in individual galaxies as well as in less massi- ve (dark matter) substructures. For the case where dark matter is composed of particles, one can use what is referred to in the literature as indirect pro- bes. That is the case when one can use the assump- tion that particle dark matter candidates annihilate or decay into Standard Model particles and produ- ce large amounts of high energyantimatter cosmic |
|
|
ray particles. If these cosmic rays, influence the locally measured antimatter to matter ratios at high energies; they then become a probe for new physical phenomena. In addition one can search for signals in high energy neutrinos, in microwaves and in the diffuse gamma-ray radiation. Over the last decade measurements of cosmic rays, neutrinos, in microwaves and in gamma rays have been performed by a sequence of experiments including PAMELA, AMS-02, IceCube, WMAP, Planck, Fermi Large Area Telescope, HESS and HAWC. My work has been using that information making connections and probing the properties of particle dark matter.
Selected Work in Dark Matter and its Indirect Signals
|
|
- “Scrutinizing the isotropic gamma-ray background in search of dark matter
”
Ilias Cholis, and Iason Krommydas
Phys. Rev. D 110, no. 10, 103032 (2024), arXiv:2408.11421 [astro-ph.HE]
- “Return of the templates: Revisiting the Galactic Center excess with multimessenger observations”
Ilias Cholis, Yi-Ming Zhong, Samuel D. McDermott and Joseph P. Surdutovich
Phys. Rev. D 105, 103023 (2022), arXiv:2112.09706 [astro-ph.HE]
- “Antideuterons and antihelium nuclei from annihilating dark matter
”
Ilias Cholis, Tim Linden and Dan Hooper
Phys. Rev. D 102, no. 10, 103019 (2020), arXiv:2001.08749 [astro-ph.HE]
- “A robust excess in the cosmic-ray antiproton spectrum: Implications for annihilating dark matter
”
|
Ilias Cholis, Tim Linden and Dan Hooper
Phys. Rev. D 99, no. 10, 103026 (2019), arXiv:1903.02549 [astro-ph.HE]
- “Bounds on Ultra-Light Hidden-Photon Dark Matter from 21cm at Cosmic Dawn”
Ely Kovetz, Ilias Cholis and David E. Kaplan
Phys. Rev. D 99, no. 12, 123511 (2019), arXiv:1809.01139 [astro-ph.CO]
- “A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics”
Francesca Calore, Ilias Cholis, Christopher McCabe and Christoph Weniger
Phys. Rev. D 91, no. 6, 063003 (2015), arXiv:1411.4647 [hep-ph]
- “Indirect Detection Analysis: Wino Dark Matter Case Study”
Andrzej Hryczuk, Ilias Cholis, Roberto Iengo, Maryam Tavakoli and Piero Ullio
JCAP 1407, 031 (2014), arXiv:1401.6212 [astro-ph.HE]
- “New limits on dark matter annihilation from AMS cosmic ray positron data”
Lars Bergstrom, Torsten Bringmann, Ilias Cholis, Dan Hooper and Christoph Weniger
Phys. Rev. Lett. 111, 171101 (2013), arXiv:1306.3983 [astro-ph.HE]
American Physical Society Highlighted Article
- “Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS ”
Ilias Cholis and Dan Hooper
Phys. Rev. D 88, 023013 (2013), arXiv:1304.1840 [astro-ph.HE]
- “Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties ”
Carmelo Evoli, Ilias Cholis, Dario Grasso, Luca Maccione and Piero Ullio
Phys. Rev. D 85, 123511 (2012), arXiv:1108.0664 [astro-ph.HE]
- “The Case for a 700+ GeV WIMP: Cosmic Ray Spectra from ATIC and PAMELA ”
Ilias Cholis, Gregory Dobler, Douglas P. Finkbeiner, Lisa Goodenough, and Neal Weiner
Phys. Rev. D 80, 123518 (2009), arXiv:0811.3641 [astro-ph]
- “The PAMELA Positron Excess from Annihilations into a Light Boson”
Ilias Cholis, Douglas P. Finkbeiner, Lisa Goodenough, and Neal Weiner
JCAP 0912:007, (2009), arXiv:0810.5344 [astro-ph]
- “High Energy Positrons From Annihilating Dark Matter ”
Ilias Cholis, Lisa Goodenough, Dan Hooper, Melanie Simet and Neal Weiner
Phys. Rev. D 80, 123511 (2009), arXiv:0809.1683 [hep-ph]
- “High Energy Positrons and the WMAP Haze from Exciting Dark Matter”
Ilias Cholis, Lisa Goodenough and Neal Weiner
Phys. Rev. D 79, 123505 (2009), arXiv:0802.2922 [astro-ph]
Studying Cosmic-Ray Propagation and Sources
|
|
With data in cosmic rays and combined with gamma rays, x-rays and microwaves, we can make connections between different wavelengths pro- bing the same astrophysical processes and sources. The allows us to study galactic and (at even higher energies) extragalactic high-energy astrophysics. These include environments as are those at or close to supernova, pulsars, black holes and the galactic and extragalactic medium. With current and future detectors, we are able to even study new energy scales not directly accessible to laboratories. In the process we also advancing our understanding and modeling of cosmic-ray propagation in the Interstellar Medium. |
|
|
Selected Work in Cosmic-Ray Astrophysics
|
|
- “Observing signals of spectral features in the cosmic-ray positrons and electrons from Milky Way pulsars”
Ilias Cholis and Thressay Hoover
Phys. Rev. D 107, 063003 (2023), arXiv:2211.15709 [astro-ph.HE]
- “Possible Counterpart Signal of the Fermi Bubbles at the Cosmic-Ray Positrons”
Ilias Cholis and Iason Krommydas
Astrophys. J. 950:120-126 (2023), arXiv:2208.07880 [astro-ph.HE]
- “Utilizing cosmic-ray positron and electron observations to probe the averaged properties of Milky Way pulsars”
Ilias Cholis and Iason Krommydas
Phys. Rev. D 105, 023015 (2022), arXiv:2111.05864 [astro-ph.HE]
- “Studying the Milky Way pulsar population with cosmic-ray leptons”
|
Ilias Cholis, Tanvi Karwal and Marc Kamionkowski
Phys. Rev. D 98, 063008 (2018), arXiv:1807.05230 [astro-ph.HE]
- “Features in the Spectrum of Cosmic-Ray Positrons from Pulsars”
Ilias Cholis, Tanvi Karwal and Marc Kamionkowski
Phys. Rev. D 97, 123011 (2018), arXiv:1712.00011 [astro-ph.HE]
- “Possible evidence for the stochastic acceleration of secondary antiprotons by supernova remnants”
Ilias Cholis, Dan Hooper and Tim Linden
Phys. Rev. D 95, 123007 (2017), arXiv:1701.04406 [astro-ph.HE]
- “Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio”
Ilias Cholis and Dan Hooper
Phys. Rev. D 89, 043013 (2014), arXiv:1312.2952 [astro-ph.HE]
- “The Fermi Gamma-Ray Haze from Dark Matter Annihilations and Anisotropic Diffusion”
Gregory Dobler, Ilias Cholis and Neal Weiner
Astrophys. J. 741:25-36 (2011), arXiv:1102.5095 [astro-ph.HE]
- “Pulsars versus Dark Matter Interpretation of ATIC/PAMELA ”
Dmitry Malyshev, Ilias Cholis, and Joseph D. Gelfand
Phys. Rev. D 80, 063005 (2009), arXiv:0903.1310 [astro-ph.HE]
|
|
Analyzing Gamma-Ray data and studying their Astrophysical Implications
|
|
With the launching of the Fermi Large Area Te- lescope in 2008 that observed the sky at energies between ~ 50 MeV and up to 1 TeV, gamma-ray astronomy and astrophysics has entered a new era. To study the gamma-ray sky, new techniques have been developed including template analyses and analyses using wavelets.
|
|
|
Some results, include the discovery of the Fermi Bubbles
and the gamma-ray excess towards the galactic center, in both of which I have been involved.
To study these gamma-ray diffuse emissions that are in the galaxy, one needs to work both on their characterization
through data analyses and also on their interpretation by making connections with cosmic-ray physics and physics of extreme bodies as are pulsars but also potentially with particle physics.
The Fermi Bubbles, (initially Fermi Haze) are the gamma-ray counter part signal (throughout the up-scattering of CMB, IR and starlight by cosmic-ray electrons) of the microwave Haze that comes form the synchrotron radiation of the same cosmic-ray electrons. That cosmic-ray electron population extends up to ~10 kpc and it is suggested to have been originally injected into the interstellar medium a few million years ago.
Through a different set of analyses a spatially extended component has also been revealed toward the galactic center, peaking at energies of ~2-5 GeV.
The study of the extension of the excess emission, (in terms of spectrum and morphology) to higher latitudes is a key ingredient in both testing its validity and also in terms of its interpretation.
Additionally, the galactic diffuse background form the Milky Way (that is dominant at low latitudes) and the identification and characterization of its uncertainties is necessary in properly subtracting its contribution from the
gamma-ray data; which in turn allows us to correctly interpret the excess emission.
Millisecond pulsars has been suggested as a possible source of the gamma-ray excess towards Galactic Center. Yet, one can use gamma-ray observations of other individually identified millisecond pulsars and also X-ray observations of bright low-mass X-ray binaries (progenitors of millisecond pulsars) to estimate that the number of millisecond pulsars in the Inner Galaxy can only explain ~ 10% of the total excess.
Alternatively, a series of leptonic cosmic-ray outbursts could generate the observed gamma-ray excess towards the Galactic Center. That would be through a small series of outbursts, taking place the last 100s of thousand to a million years ago. In fact, a connection to the Fermi Bubbles (originating form strong outflow activity a few million years ago) can be made.
|
|
Selected Work in Gamma-Ray Data Studies and Astrophysics
|
- “Robustness of the Galactic Center excess morphology against masking”
Yi-Ming Zhong and Ilias Cholis
Phys. Rev. D 109, 123017 (2024), arXiv:2401.02481 [astro-ph.HE]
- “On the morphology of the gamma-ray galactic centre excess”
Samuel D. McDermott, Yi-Ming Zhong and Ilias Cholis
MNRAS 522, L21-L25 (2023), arXiv:2209.00006 [astro-ph.HE]
- “Return of the templates: Revisiting the Galactic Center excess with multimessenger observations”
Ilias Cholis, Yi-Ming Zhong, Samuel D. McDermott and Joseph P. Surdutovich
Phys. Rev. D 105, 103023 (2022), arXiv:2112.09706 [astro-ph.HE]
|
- “Testing the Sensitivity of the Galactic Center Excess to the Point Source Mask”
Yi-Ming Zhong, Samuel D. McDermott, Ilias Cholis and Patrick J. Fox
Phys. Rev. Lett. 124, 231103 (2020), arXiv:1911.12369 [astro-ph.HE]
- “Analyzing the gamma-ray sky with wavelets”
Bhaskaran Balaji, Ilias Cholis, Patrick J. Fox, and Samuel D. McDermott
Phys. Rev. D 98, 043009 (2018), arXiv:1803.01952 [astro-ph.HE]
- “HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess”
Dan Hooper, Ilias Cholis, Tim Linden, and Ke Fang
Phys. Rev. D 96, 103013 (2017), arXiv:1702.08436 [astro-ph.HE]
- “The Galactic Center GeV Excess from a Series of Leptonic Cosmic-Ray Outbursts”
Ilias Cholis, Carmelo Evoli, Francesca Calore, Tim Linden, Christoph Weniger and Dan Hooper
JCAP 1512, no. 12, 005 (2015), arXiv:1506.05119 [astro-ph.HE]
- “Background model systematics for the Fermi GeV excess”
Francesca Calore, Ilias Cholis and Christoph Weniger
JCAP 1503, 038 (2015), arXiv:1409.0042 [astro-ph.CO]
- “Challenges in Explaining the Galactic Center Gamma-Ray Excess with Millisecond Pulsars”
Ilias Cholis, Dan Hooper and Tim Linden
JCAP 1506, no. 06, 043 (2015), arXiv:1407.5625 [astro-ph.HE]
- “Pulsars Cannot Account for the Inner Galaxy's GeV Excess”
Dan Hooper and Ilias Cholis and Tim Linden and Jennifer Siegal-Gaskins and Tracy Slatyer
Phys. Rev. D 88, 083009 (2013), arXiv:1305.0830 [astro-ph.HE]
- “The Fermi Haze: A Gamma-Ray Counterpart to the Microwave Haze ”
Gregory Dobler, Douglas P. Finkbeiner, Ilias Cholis, Tracy R. Slatyer, Neal Weiner
Astrophys. J. 717:825-842 (2010), arXiv:0910.4583 [astro-ph.HE]
Study of High Energy Neutrino Astrophysics
A recently raised astrophysics question has been the interpretation of the PeV-scale neutrino obser- vations from IceCube. There are a number of possible sources and mechanisms that could produce these PeV neutrinos. Photo-meson interactions of 10-100 PeV protons is a very promising mechanism. This could be realized in a variety of astrophysical sources, including gamma-ray bursts (GRBs), acti- ve galactic nuclei (AGN) and starburst galaxies. Alternatively, starburst galaxies can explain such eve- nts. Among the galactic sources of high energy neutrinos, one can also study the possibility of detect- ing neutrino signals from either dark matter annihilations in the galactic halo, or from the Fermi-Bub- bles (in the case their origin is hadronic). Both would be toward the inner part of the Milky Way and could be probed by both current (IceCube) and future (KM3NeT) neutrino telescopes. |
|
|
Selected Work in High Energy Neutrino Astrophysics
- “Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics, and Particle Physics”
Louis A. Anchordoqui, Vernon Barger, Ilias Cholis, Haim Goldberg, Dan Hooper, Alexander Kusenko, John G. Learned, Danny Marfatia, Sandip Pakvasa, Thomas C. Paul and Thomas J. Weiler
JHEAp 01, 001 (2014), arXiv:1312.6587 [astro-ph.HE]
- “On The Origin of IceCube's PeV Neutrinos”
Ilias Cholis and Dan Hooper
JCAP 06, 030 (2013), arXiv:1211.1974 [astro-ph.HE]
- “Searching for the high-energy neutrino counterpart signals:The case of the Fermi bubbles signal and of dark matter annihilation in the inner Galaxy”
Ilias Cholis
Phys. Rev. D 88, no. 6, 063524 (2013), arXiv:1206.1607 [astro-ph.HE]
Gravitational Waves
|
|
The first ever detection of gravitational waves from the coalescence of two black holes, by the LIGO Collabora- tion in September 2015, has opened a new window to astrophysics and cosmology. Together with collaborators from Johns Hopkins and the University of Minnesota, we have worked on various questions raised from the first observations of gravitational waves. Those include, connections with dark matter and primordial black holes produced in the early stages of the Universe,
future cross-correlations of gravitational wave data with data from galaxy surveys, studies for rare but characteristic coalescence events where multiple gravitational-wave |
|
|
modes would be observable from inspiraling binaries, studies of the stochastic gravitational wave background and work on how future observations can increase our understanding on the properties of black hole binaries, that may lead to answers on their progenitors.
Selected Work in Gravitational Waves
|
|
- “Can Thorne-Żytkow objects source GW190814-type events?”
Ilias Cholis, Konstantinos Kritos and David Garfinkle
Phys. Rev. D 105, 123022 (2022), arXiv:2106.07662 [astro-ph.GA]
- “Black holes merging with low mass gap objects inside globular clusters”
Konstantinos Kritos and Ilias Cholis
Phys. Rev. D 104, 043004 (2021), arXiv:2104.02073 [astro-ph.GA]
- “Evaluating the merger rate of binary black holes from direct captures and third-body soft interactions using the Milky Way globular clusters”
Konstantinos Kritos and Ilias Cholis
Phys. Rev. D 102, 083016 (2020), arXiv:2007.02968 [astro-ph.GA]
- “Limits on runaway growth of intermediate mass black holes from advanced LIGO”
Ely D. Kovetz, Ilias Cholis, Marc Kamionkowski and Joseph Silk
Phys. Rev. D 97, no. 12, 123003 (2018), arXiv:1803.00568 [astro-ph.HE]
|
- “Black hole mass function from gravitational wave measurements”
Ely D. Kovetz, Ilias Cholis, Patrick C. Breysse, and Marc Kamionkowski
Phys. Rev. D 95, no. 8, 103010 (2017), arXiv:1611.01157 [astro-ph.CO]
- “On the Gravitational Wave Background from Black Hole Binaries after the First LIGO Detections”
Ilias Cholis
JCAP 06, 037 (2017), arXiv:1609.03565 [astro-ph.HE]
- “Orbital eccentricities in primordial black holes binaries”
Ilias Cholis, Ely D. Kovetz, Yacine Ali-Haïmoud, Simeon Bird, Marc Kamionkowski, Julian B. Muñoz and Alvise Raccanelli
Phys. Rev. D 94, no. 8, 084013 (2016), arXiv:1606.07437 [astro-ph.HE]
- “Did LIGO detect dark matter?”
Simeon Bird, Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli and Adam G. Riess
Phys. Rev. Lett. 116, no. 20, 201301 (2016), arXiv:1603.00464 [astro-ph.CO]
American Physical Society Highlighted Article